
Software Supply Chains: a Tutorial

Audris Mockus
University of Tennessee

audris@utk.edu

ISEC’22 [2022-02-03 Thu]

Outline
Open Source Challenges

What are Open Source Software Supply Chains?

Why care about Software Supply Chains?

What are key risks of Software Supply Chains?

How to measure Software Supply Chains?

Using WoC to Measure SSCs

Research Enabled by SSCs (WoC)

Conclusions

Summary

References

About the speaker

Where/Who/What

I Moscow Physical Technical
Institute, Carnegie Mellon
University

I 23 years at Bell Labs/Avaya Labs
I Since Fall’14 at the University of

Tennessee
I Professor of Digital Archeology and

Evidence Engineering
I or Data Science/Big data/Software

Engineering

I Looking for interested students,
postdocs, visitors

Software Supply Chains
I What are Open Source Software Supply

Chains?

I Why should anyone care about Open Source
Software Supply Chains?

I What are the main types of OSS supply chains?

I What are key risks associated with each type of
OSS supply chain?

I How to measure and manage these risks?
I Practical examples

I World of Code or WoC
I Current, Complete, Curated, Cross-referenced

Collection of Open Source Version Control Data
(CCCCCosvCd)

I “Research Ready” for Supply Chain Research

History

I The term is used in wide variety of
circumstances

I Inspired by traditional supply chains
I “Supply Chain Management” (SCM) Keith Oliver

(1982) [25] supply chain management [2], i.e.,
planning, organizing, and controlling in business
logistics

I (1999) [28] “a system of organizations, people,
activities, information, and resources involved in
moving a product or service from supplier to
customer”

History

I Not consistently used for software
I “software supply chain management” Jacqueline

(1995) [14] instead of “system development life
cycle”

I Greenfield (2003) [11], “software components are
created by software factories, and software

supply chain is used to create standards to ease
the alignment and assembly”
I Aparna (2005) [4] “how to select from multiple

suppliers” in “software focused supply chain.”
I Ellison(2010) [9] “how risks can be introduced in

coding, control management, deployment and
operations.”

Traditional Supply Chain
is a set of three or more companies directly linked by one or
more of the upstream or downstream flows of products,
services, finance, and information from a source to a customer
Key features:

I Complex interdependencies

I Distributed decisions

Graphics courtesy of Diane Palmquist and Greg Kefer, GT Nexus, UT Supply Chain Forum, November 12, 2014

Traditional Supply Chain
is a set of three or more companies directly linked by one or
more of the upstream or downstream flows of products,
services, finance, and information from a source to a customer
Key features:

I Complex interdependencies

I Distributed decisions

Graphics courtesy of Diane Palmquist and Greg Kefer, GT Nexus, UT Supply Chain Forum, November 12, 2014

Key concepts

I We define SSC by making analog of
components in traditional SC.
I Nodes:

I Actors: developers and groups (companies)
I Support/motivation: corporate backers supporting

these developers or groups (”financing”)
I Software projects/packages/libraries

I Links: relationships among software projects or
packages

I Product: Code, Effort, Knowledge
I Actions: modifying/copying/learning/implementing

the source code

SSC of the first kind: “dependencies”
I Technical dependencies among projects with

change effort as product flow: upstream effort
either reducing or increasing the need for
downstream effort

I Risks: unknown vulnerabilities, breaking
changes, lack of maintenance, lack of
popularity

I Measure: no way to tell how many projects use
a package/library

Examples
I Python: import re

I Java: import java.util.Collection;

I JavaScript: package.json

I(a) chain: CRAN

I(a) chain: ember

SSC of the first kind (b): “toolchain”

I Tool-chain needed to build the project

I Risks: tool support waining, changing
standards, obsolescence of the tool chain

Examples
I make, ant, cmake, junit, gcc, jenkins, git, . . .

I LAMP, MEAN, . . .

SSC of the second kind: “copy”

I Copying of the source code from project to
project as product flow (22 percent of files
copied to, on average, 14 other repositories)

I Risks: license, unfixed bugs, no new
functionality

I Measure: no way to identify what has been
copied

Examples of SSC of the second kind
I Implementation of a complex algorithm

I Useful template

I Build configuration

Code-reuse-induced dependencies

I Collect all the blobs for a project

I Look for all other projects that contain the
same blobs

I Investigate blobs that span many projects

I What are these code reuse patterns?

Code-reuse-induced — emberjs

I Build tools: rake — for Ruby on Rails

I Testing: qunit — testing framework

I Static: jQuery – a JavaScript library

I Framework: epf – Emberjs Persistence
Foundation

Code-reuse-induced — emberjs

I Prior incarnations: SproutCore/Amber.js - early
name for the EmberJS project,

I Hard forks: innoarch/bricks.ui - a hard fork of
EmberJS that was developed as a separate
project.

I Tutorials cookbooks/nodjs: early code
examples

I Package manager: package.json — for npm

SSC of the third kind: “knowledge”
I Knowledge (product) flow through code

changes as developers learn from and impart
their knowledge to the source code

I Risks: developers may leave, companies may
discontinue support, bad practices may
propagate

I Measure: no way to know what projects a
developer worked on

Examples of SSC of the third kind
I Developers gaining skills with

tools/packages/practices

I Developers spreading practices, e.g., testing
frameworks

What are Knowledge Flows

Transfer of tacit and explicit information, culture, behaviors,
customs, or values among individuals or groups that occurs as
a result of activities that are based on shared or
interdependent artifacts, interests, or objectives [22]. It is not
simply an exchange of explicit information as on, for example,
StackExchange.

The three kinds do not cover patch
deployment

I SolarWind and other patch deployment
schemes

Might traditional SCs be relevant to
SSCs?

I Developers are distributed and scattered all of
the world geographically, but cooperate on the
development of software products through
virtual internet.

I A majority of software products are built on
top of one or more mature software products
by directly reusing source code of other
projects, following successful design in other
projects, involving core developers from other
projects, etc.

Why should anyone care about Open
Source Software Supply Chains?

I Why should one care about OSS?
I underpins all other software via standard platforms,

tools, and components

I Why should one care about SSCs?
I no software is standalone: everything depends on

decisions made by others

Why should anyone care about OSS?

I Source code available

I Software development is transparent

I If provider leaves, community will continue
maintaining it

I No licensing costs

I Extremely rich resource of libraries components
and frameworks in almost any language

I Provides most widely used industry-standard
platforms (linux)

I Underpins most commercial software

Why should anyone care about OSS?

I Flexibility and Agility

I Share Maintenance Costs

I Cost-Effectiveness

I Transparency

I Speed

I Better Security

Why should anyone care about Software
Supply Chains?

I Why should developers care about SSCs?
I No software is standalone: need platform, tools,

components, frameworks, libraries

I Why should users care about SSCs?
I Will the stuff be fixed?
I Can I access the source code (by whom)?
I Will it continue to work as it does now?

I Why should enterprises care about SSCs?
I Save costs: writing from scratch not an option
I Follow standards/interoperability (e.g., linux)

I Why should governments care about SSCs?
I Good for business
I Good for training citizens

Why should anyone care about Software
Supply Chains?

I With a supply chain perspective in OSS
development, developers can better evaluate
software components on various properties,
e.g., risks, maintenance and quality, thus being
enabled to make more wise decisions on the
selection of downstream packages to u

se. Besides, as the increment of transparency and
visibility in SSC, developers are enabled to seek for
more talented software engineers to cooperate with,
which leads to a faster growth in knowledge and
learning experience for developers, more mature and
successful software products, and meanwhile, speeds
up the evolution of software ecosystems.
I In short, a supply chain perspective on OSS

development leads to novel research questions,
insights, and practical applications.

What are key risks of Software Supply
Chains?

I Type Ia: unknown vulnerabilities, breaking
changes, lack of maintenance, lack of
popularity

I Type Ib: tool support, changing standards,
obsolescence of the tool chain

I Type II: license compliance, known
vulnerabilities/bugs, missing updated
functionality

I Type III: developers may leave, companies may
discontinue support

Visibility

Visibility
Information that developers have about the
inputs, processes, sources and practices used to
bring the product to consumers/market. This
includes complete supply chain visibility including
traceability for the entire supply chain. Visibility
is, generally, inwardly/developer focused.

Transparency
Information that developers share with their
consumers about the inputs, processes, sources
and practices used to bring the product to the
consumer. It is more outwardly focused/from the
consumer perspective than visibility.

How to measure Software Supply Chains?

I Need all versions of all source code
I Discover all git repositories
I Clone/download these project repositories
I Extract/correct necessary data
I Construct SSCs

Aside on git
I git is a database containing sha1 indexed

objects:
I blobs: a source code file
I trees: a directory
I commits: a change

I sha1 of last commit (HEAD) reflects on entire
past

**

Git Model

Git Model - Trees

Git Model - Commits

Measurement infrastructure

I WoC: Discover, Retrieve, Store, Analyze,
Update [21, 17]

I All: repositories over 50PB

I 20 percent semi-annual growth

Discover

I Forge discovery
I History (since 1998)

I Search/Developer News/Aggregators/Reviews
I Major projects
I Class assignments (Digital Archeology)

I Within-forge discovery
I Use forge-specific APIs
I Develop tricks to overcome limits

I Compare to other efforts
I Softwareheritage.org: UNESCO sponsored

I sole objective to capture all code
I has 28 percent fewer commits than WoC

Storage/retrieval tricks

I Impossible to store all 50PB
I De-duplicated: 250TB

I Can not transfer 50PB
I Do only updates: use last commit
I Approximately 200TB/quarter

WoC: What is it?

I Complete: discover git repos
I approx 100 forges, 170M repos, 60+M Authors)

I Current: quarterly releases

I Curated/research ready

I WoC version U numbers are at
bitbucket.org/swsc/overview/

I Projects, authors, blobs, APIs, commits fully
cross-referenced

I How to use: github.com/woc-hack/tutorial

I Web interface: worldofcode.org

Version Control Data Challenges

I Not experimental data

I Multiple contexts
I Missing events
I Incorrect, filtered, or tampered

with

I Continuously changing

I Systems and practices are
evolving

I Challenges measuring or defining
accuracy

I Potential for misinterpretation

Commits in VCS

I Context:
I Why: merge/push/branch, fix/enhance/license
I What: e.g, code, documentation, build, binaries
I Practice: e.g., centralized vs distributed

I Missing: e.g., private VCS, no links to defect

I Incorrect: tangled, incorrect comments, wrong
dates, authors

I Filtered: small projects, import from CVS

I Tampered with: git rebase

OSS data are rather bad

“productive” authors
Number of commits Author

10960000 one-million-repo < mikigal .acc@gmail .com >
4400778 datakit < datakit@docker .com >
2463758 greenkeeper[bot] < greenkeeper [bot]@users.noreply .github.com >
2063212 Auto Pilot < noreply@localhost >
1864730 Your Name < you@example.com >

Silly competitions
I Fake commits with everyone’s name to have

most contributors
Authors Repo
389993 cirosantilli/imagine-all-the-people
I The longest chain of commits

Length of commit chain Repo
9959999 github.com/one-million-repo/biggest-repo-ever

More examples at bitbucket.org/swsc/overview/fun/

Data That Needs to be Curated

I Author IDs

I Repository forks

I Code dependencies (dozens of languages)

I Project types

I Link to external data sources

I Many other challenges

Curated Data: Partially Solved Problems

I Author IDs [1, 8, 10]

I Repository forks [24]

I Code dependencies (dozens of languages)

I Linking to external data sources

I Many other challenges

Example: Identifying Authors

I We have 34M strings
I Are these two the same person?

I Aaron Lee < aaron.lee@rackspace.com>
I Aaron Lee < wwkeyboard@gmail.com>

I Text similarity (adjusted for common names)
I Behavioral fingerprints:

I Similarity of written text (Doc2Vec embedding)
I Change the same source code files
I Work in the similar time-zones

I Trained machine learning: 99.99 accuracy

Results: Identifying Authors

I Out of 16007 distinct author strings 10950
distinct authors

I Up to 14 ids for a single author

I Situation is much worse for more productive
authors

I Dramatic differences in network measures

Eliciting WoC Requirements: History

I 2000-2007: Proof of concept [3, 20, 21]

I 2010-2016: A company-wide WoC [13, 12]

I 2016-2021: Conceptualizing and investigating
SSCs [16, 18]

I 2020-: WoC community planning
I Hackathons
I Advisory Board

How to participate?

I worldofcode.org
I bitbucket.org/swsc/overview:

I related publications / data / analysis

I Next hackathon
I woc-hack.slack.com : sign up at

http://bit.ly/WoC-Hack
I github.com/woc-hack/tutorial
I Signup form http://bit.ly/WoCSignup

http://bit.ly/WoC-Hack
http://bit.ly/WoCSignup

WoC APIs

For a more comprehensive experience during
Software Supply Chains tutorial at ISEC’22 please
have your computer available during the tutorial.
Also please sign up in advance at
http://bit.ly/WoC-Signup and, once your
account is created, log in and try out the World of
Code tutorial:
https://github.com/woc-hack/tutorial

http://bit.ly/WoC-Signup
https://github.com/woc-hack/tutorial

What types of nodes are there?

I a - Author id; A - aliased author id

I p - repository (project); P - deforked project

I c - commit

I b - blob; ob - “old” blob (a predecessor version
in a commit changing a file)

I f - filename (including full path)

I Pkg - imported package (from parsed blob)

I Def - implemented package (from parsed blob)
I Attributes

I t - time stamp (of the commit)
I l - language of the code in the blob

What types of links are there?

I SSC I:
I b to def,pkg
I A to Def, Pkg
I P to Def, Pkg

I SSC II:
I b to f,t[AP], also to f[aA] (first blob)

I SSC III:
I [aA] to [pPcf] also to fb (first blob)
I [pP] to [aAcf] also to fb (first blob)

I [aA] to [pPcbf] also to fb (first blob)

Why a resource like WoC is necessary?

I To improve research quality
I Most software development is not for isolated

projects
I But current research practices ignore SSC

relationships and lead to inadequate
models/tools/practices

I To do entirely new types of research
I What made OSS so successful so far?
I Create fundamental theories in software

engineering enabled by WoC and similar
observatories

Unique features

I Key advantages WoC-like infrastructure

I Completeness: proper instead of convenience
sampling

I Cross-referencing:
I first time ever measure/study Type II and III SSCs

and downstream of Type I SSCs

I Curation: don’t need to spend a lifetime
cleaning data Not accounting for activities
downstream

What Languages are Popular?

Language Popularity: Authors

2010 2012 2014 20182016

A
u
th
o
rs

How Difficult Each Language is?

Productivity by Language

2010 2012 2014 20182016

C
o
m
m
it
s/
A
u
th
o
rs

Can we predict which technology will
prosper/fail?

I Two data-science technologies: abstraction of
data.frame in R
I tidy vs data.table

I Sample: all R-language files in public
repositories
I 1.5M files, 5M versions

I When was the first time tidy or data.table
included?
I 17,536 projects use data.table
I 7,032 projects use tidy

Results (Choice and Decision Maker)

I Choice
I Exposure: Recent and Cumulative deployments,

Mentions on StackOverflow
I Qualities: Activity, developers,responsiveness, open

issues

I Decision maker
I Activity, developers
I Performance needs
I Social network
I Technical network

Note: Red- negative, Green- positive

VDiOS (Vulnerability Detection in Open
Source)

I “Orphan vulnerabilities”
I Vulnerabilities in copied code that still exist in a

project after they are discovered and fixed in
another project.

I Code is cloned and committed, not imported from
a library or package manager.

I Link to the original code does not exist or is not
readily available.

I Often overlooked part of the software supply chain.

Risks from Orphan Vulnerabilities
I An exploit for such vulnerabilities may be

widely known, making it easier to attack
software with known vulnerabilities.

I Code in such repositories may be copied to
other projects that may not be aware of the
vulnerability.

I Code in such repositories may be built into
applications and run by unsuspecting users.

I If a substantial number of OSS projects contain
known and unfixed vulnerabilities, OSS may
suffer reputational damage as a dump of low
quality code where it may be hard to find
high-quality projects

VDiOS operation

I Given a vulnerability fix in one project,
identifies all other projects that:
I Still contain the vulnerable code.
I Used to contain the vulnerable code, but have now

been fixed.
I Used to contain the vulnerable code, have been

changed, but we do not know if the change fixed
the vulnerability.

I World of Code provides
I Nearly complete collection of open source software
I Allows VDiOS to find copied files at a scale that

has traditionally been computationally infeasible.

VDiOS architecture

VDiOS summary

I Key Benefits:
I Inform maintainers and users of still vulnerable

projects about the risks of the vulnerability in their
code.

I Warn users that contemplate reusing such code
about the unpatched vulnerabilities.

More Examples
I Contextualize/Correct/Impute [23]

I Author aliasing/Bot detection: via behavioral
fingerprinting [1, 8, 10]

I De-forking/de-cloning via shared commits [24]

I Type I: dependencies
I Models of spread [19]
I Models of popularity [7]
I Patterns of effort contribution [6]

I Type II: copying
I Orphan vulnerabilities [26]

I Type III: knowledge
I Knowledge at loss [27]
I Developer impact [15]
I Skill spaces [5]

Beyond SSCs

I Improve research quality, e.g.,
I Avoid convenience sampling
I Account for (often predominant) network effects
I Conduct natural experiments
I Increase productivity by sharing curated data

I Build tools for FLOSS developers

I Inform Enterprises

What has been done so far?
I Contextualize/Correct/Impute [23]

I Author aliasing/Bot detection: via behavioral
fingerprinting [1, 8, 10]

I De-forking/de-cloning via shared commits [24]
I Type I: dependencies

I Models of spread [19]
I Models of popularity [7]
I Patterns of effort contribution [6]

I Type II: copying
I Orphan vulnerabilities [26]

I Type III: knowledge
I Knowledge at loss [27]
I Developer impact [15]
I Skill spaces [5]
I Eight implemented use cases

I Relationships: code flow, technical and tool
dependencies, knowledge flow [6, 7, 26]

Other names for SSC risks

I License/Regulatory

I Breaking Changes

I Lack of updates

I Corporate Involvement

I Exploits

I Truck factor

I Technology advancements

Takeaways

I OSS: why it is worthy of study

I SSC: why relevant for present software, types
and risks

I OSS Observatory (WoC): help speed discovery
in this novel area

I You can benefit too!

Bio

Audris Mockus worked at AT&T, then Lucent Bell Labs and Avaya Labs for 21 years.
Now he is the Ericsson-Harlan D. Mills Chair professor in the Department of Electrical
Engineering and Computer Science of the University of Tennessee.
He specializes in the recovery, documentation, and analysis of digital remains left as
traces of collective and individual activity. He would like to reconstruct and improve
the reality from these projections via methods that contextualize, correct, and
augment these digital traces, modeling techniques that present and affect the behavior
of teams and individuals, and statistical models and optimization techniques that help
understand the nature of individual and collective behavior. His work has improved the
understanding of how teams of software engineers interact and how to measure their
productivity.
Dr. Mockus received a B.S. and an M.S. in Applied Mathematics from Moscow
Institute of Physics and Technology in 1988. In 1991 he received an M.S. and in 1994
he received a Ph.D. in Statistics from Carnegie Mellon University.

Abstract
Software engineering (SE) studies practices employed by individual projects. The
emergence of and extensive reliance on open source software (OSS) make that
traditional SE focus too narrow to comprehend and support key developer decisions in
the highly interconnected network of OSS. These networks have least three types of
relationships: runtime or tool-chain dependencies, copying of the source code, and
transfer of code maintenance expertise. These three relationships are similar to those
in traditional supply chains (SCs) with maintenance effort, source code, and
knowledge representing the product flow from supplier to consumer in traditional SCs.
As in traditional SCs, the decisions are taken in a decentralized manner and risks may
materialize because of events at nodes far away from the consumer or producer in the
supply chain. Importantly, each of the three types of SSCs has unique advantages and
risks. This tutorial will:

I Conceptualize these three OSS dependencies as types of software supply
chains (SSCs),

I Present ways to operationalize the measurement of OSS SSCs,

I Go over several examples of the new insights, research questions, and
applications of OSS SSCs

I Introduce World of Code (WoC) infrastructure designed to support research
on OSS SSCs

Expected outcomes: Participants will be able to articulate the nature of the three
types of OSS SSCs, understand primary risks and benefits of each type of SSC, and
will gain basic skills needed to measure the SSCs using WoC infrastructure.

References I
[1] Sadika Amreen, Yuxia Zang, Chris Bogart, Russell Zaretzki, and Audris Mockus.

Alfaa: Active learning fingerprint based anti-aliasing for correcting developer identity errors in version control
systems.
International Journal of Empirical Software Engineering, 2019.

[2] Ronald H Ballou.
Business logistics/supply chain management: planning, organizing, and controlling the supply chain.
Pearson Education India, 2007.

[3] Hung-Fu Chang and Audris Mockus.
Constructing universal version history.
In ICSE’06 Workshop on Mining Software Repositories, pages 76–79, Shanghai, China, May 22-23 2006.

[4] Aparna A Chhajed and Susan H Xu.
Software focused supply chains: Challenges and issues.
In Industrial Informatics, 2005. INDIN’05. 2005 3rd IEEE International Conference on, pages 172–175. IEEE,
2005.

[5] Tapajit Dey, Andrey Karnauch, and Audris Mockus.
Representation of developer expertise in opensource software.
In ICSE 2021. ACM Press, May 2021.

[6] Tapajit Dey, Yuxing Ma, and Audris Mockus.
Patterns of effort contribution and demand and user classification based on participation patterns in npm
ecosystem.
In Proceedings of the 15th International Conference on Predictive Models and Data Analytics in Software
Engineering. ACM, 2019.

[7] Tapajit Dey and Audris Mockus.
Are software dependency supply chain metrics useful in predicting change of popularity of npm packages?
In Proceedings of the 14th International Conference on Predictive Models and Data Analytics in Software
Engineering, pages 66–69. ACM, 2018.

References II
[8] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna Filippova, and Audris

Mockus.
Detecting and characterizing bots that commit code.
In IEEE Working Conference on Mining Software Repositories, May 2020.

[9] Robert J Ellison and Carol Woody.
Supply-chain risk management: Incorporating security into software development.
In System Sciences (HICSS), 2010 43rd Hawaii International Conference on, pages 1–10. IEEE, 2010.

[10] Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus.
A dataset and an approach for identity resolution of 38 million author ids extracted from 2b git commits.
In IEEE Working Conference on Mining Software Repositories: Data Showcase, May 2020.

[11] Jack Greenfield and Keith Short.
Software factories: assembling applications with patterns, models, frameworks and tools.
In Companion of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 16–27. ACM, 2003.

[12] Randy Hackbarth, Audris Mockus, John Palframan, and David Weiss.
Assessing the state of software in a large enterprise.
Journal of Empirical Software Engineering, 10(3):219–249, 2010.

[13] Randy Hackbarth, Audris Mockus, John Palframan, and David Weiss.
Assessing the state of software in a large enterprise: A 12-year retrospective.
In The Art and Science of Analyzing Software Data, pages 411–451. Elsevier, 2016.

[14] Jacqueline Holdsworth.
Software Process Design.
McGraw-Hill, Inc., 1995.

[15] Andrey Karnauch, Sadika Amreen, and Audris Mockus.
Developer reputation estimator (dre).
In ASE’19, 2019.

References III

[16] Yuxing Ma.
Software Supply Chain (SSC) Development and Application.
PhD thesis, 2020.

[17] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
World of code: An infrastructure for mining the universe of open source vcs data.
In IEEE Working Conference on Mining Software Repositories, May 26 2019.

[18] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko, David Kennard, Russell
Zaretzki, and Audris Mockus.
World of code: Enabling a research workflow for mining and analyzing the universe of open source vcs data.
International Journal of Empirical Software Engineering, 2020.

[19] Yuxing Ma, Audris Mockus, Russell Zaretzki, Bogdan Bichescu, and Randy Bradley.
A methodology for analyzing uptake of softwaretechnologies among developers.
IEEE Transactions on Software Engineering, 2020.

[20] Audris Mockus.
Large-scale code reuse in open source software.
In ICSE’07 Intl. Workshop on Emerging Trends in FLOSS Research and Development, Minneapolis,
Minnesota, May 21 2007.

[21] Audris Mockus.
Amassing and indexing a large sample of version control systems: towards the census of public source code
history.
In 6th IEEE Working Conference on Mining Software Repositories, May 16–17 2009.

[22] Audris Mockus.
Succession: Measuring transfer of code and developer productivity.
In 2009 International Conference on Software Engineering, Vancouver, CA, May 12–22 2009. ACM Press.

References IV

[23] Audris Mockus.
Engineering big data solutions.
In ICSE’14 FOSE, 2014.

[24] Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing.
A complete set of related git repositories identified via community detection approaches based on shared
commits.
In IEEE Working Conference on Mining Software Repositories: Data Showcase, May 2020.

[25] R Keith Oliver, Michael D Webber, et al.
Supply-chain management: logistics catches up with strategy.
Outlook, 5(1):42–47, 1982.

[26] David Reid, Mahmoud Janshani, and Audris Mockus.
The extent of orphan vulnerabilities from code reuse in open source softwar.
In ICSE 2022. ACM Press, May 2022.
accepted.

[27] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus.
Quantifying and mitigating turnover-induced knowledge loss: case studies of chrome and a project at avaya.
In Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, pages 1006–1016. IEEE,
2016.

[28] Ernest L. Nichols Robert B. Handfield.
Introduction to supply chain management.
New York: Prentice-Hall, 1999.

	Open Source Challenges
	What are Open Source Software Supply Chains?
	Why care about Software Supply Chains?
	What are key risks of Software Supply Chains?
	How to measure Software Supply Chains?
	Using WoC to Measure SSCs
	Research Enabled by SSCs (WoC)
	Conclusions
	Summary
	References

